Name_

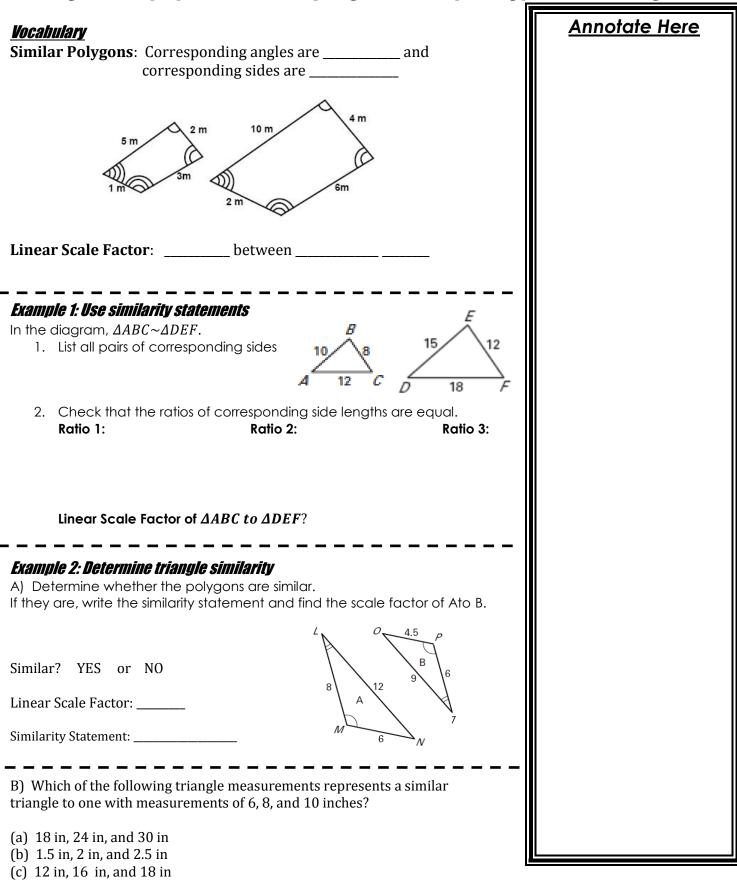
Unit 3 Similar Figures and Dilations

Target 1 – Use proportions to identify lengths of corresponding parts in similar figures

Target 2 – Perform and identify dilations

Target 3 – Use ratios of lengths, perimeter, & area to determine unknown corresponding parts3.3a –Use Scale Factor & Similarity to Determine Unknown Lengths in Polygons & Circles3.3b –Use Scale Factor & Similarity to Determine Unknown Corresponding Parts

Target 4 – Perform compositions of figures to determine the coordinates and location of the image

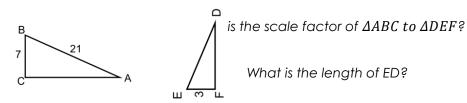

Name:

Unit 3 Similar Figures and Dilations

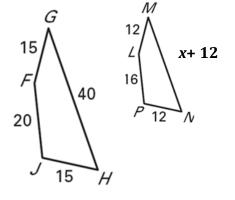
Name _____

3.1 – Similar Figures

Target 1 – Use proportions to identify lengths of corresponding parts in similar figures



Name _____

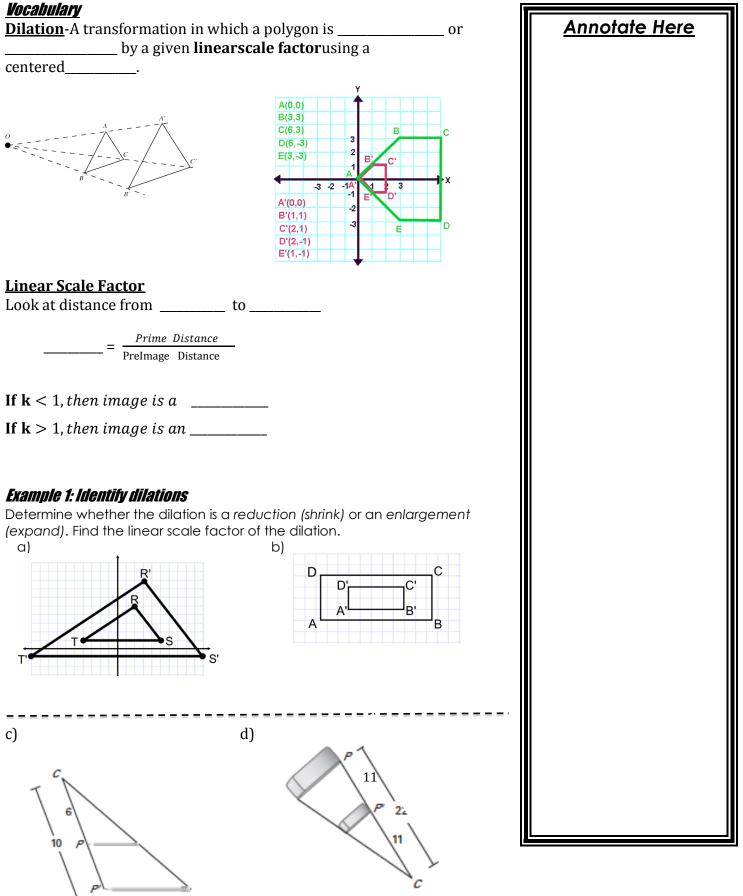

Example 3: Find linear scale factors and unknown side lengths

Proportion - A comparison of ______

a) $\triangle ABC \sim \triangle DEF$.

- b) In the diagram, FGHJ ~LMNP.
- **1.** What is the scale factor of *LMNP* to *FGHJ*?

2. Find the value of *x*.


Example 4: Use ratios to find an unknown side

The lengths of the sides of a triangle have the ratio 1:2:3. If the perimeter of the triangle is 60 yards, what is the length of the smallest side?

Unit 3.1 Worksheet Answers

1. YES, linear scale factor $=\frac{9}{2}$, similarity statement $\rightarrow TSU \sim LKM$ 2. NO 3. YES, linear scale factor $=\frac{2}{1}$, similarity statement $\rightarrow RSTU \sim WXYZ$ 4. a) Scale factor $=\frac{5}{2}$ b) $x = 27.5, y = 12, z = 65^{\circ}$ 5. x = 116. x = 97. XY = 88. YZ = 89. *C* and *D* 10. *A*, *D* and *E* 11. Answers may vary 12. Answers may vary 13. x = 4 so DE = 8814. x = 15 so EP = 915. 6

3.2 – Dilations Target 2 – Perform and identify dilations

Example 2: Perform Dilations

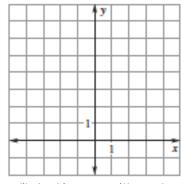
a)The vertices of triangle ABC are A (-3, 0), B (0, 6), C (3, 6). Use scalar multiplication to find A'B'C' after a dilation with is center at the origin and a scale factor of $\frac{1}{2}$.

Graph ABC and its image.

b) The vertices of ΔABC is A(-3, 4), B(3.5, -5), C(2, 3). Find the vertices of the dilated image with scale factor of 2. The center of the dilation is the origin.

Example 3: Understanding Not	ntation
-------------------------------------	---------

 ΔABC is dilated to form triangle $\Delta A'B'C'$. If $\frac{AB}{A'B'} = 7$, what is $\frac{B'C'}{BC}$?

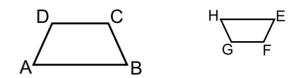

OUESTIONS OR REFLECTION

What concepts were important to take away from this target? Questions?

Unit 3.2 Worksheet Answers

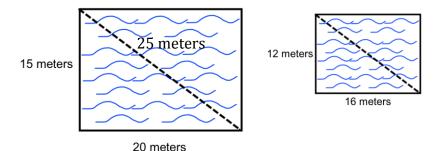
- 1. Answers may vary (check with classmates or teacher for verification)
- 2. Answers may vary (k > 1)
- 3. Q' (-40.5, 45)
- 4. LSF = $\frac{7}{3}$; Enlargement
- 5. LSF = $\frac{2}{r}$; Reduction
- 6. LSF = $\frac{3}{2}$; x = 10; Enlargement
- A'(-1.5,3),Y'(2,2.5),B'(3.5,-0.5) D'(-4,-0.5) Sum = 4.5 7.
- 3 8.
- 9. 8.5
- 10. $\frac{1}{9}$

11. $\frac{1}{3}$ 12. A' (0,6),B' (4,-6), C' (8,8) Product = -288 13. A' (-1, 2),B' (3, 1), C'(2, -1)Sum = 2 <u>35</u> 6 14. 15. Area = 96 in² 16. k = 517. A (-1.5, -1.5), B (1, 1), C (3.5, -1.5)

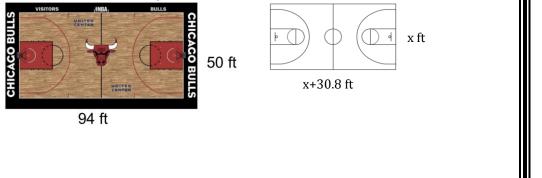


									1	y									
	iTi	Ì		_												_			Ē
_			_	_	-	-					-	-	-	-	_	-	-		F
		-	-	_	-	-	-	-	-		-	-	-	-	_	-	-	-	ŀ
		_	_	_	_	_					_	_	_	_	_	_		_	L
			_													_			L
_				_											_				Г
_	itti	-i	-	_	-	-		i –	i –	_	<u> </u>		-	-	_	-			h
_			-	-	-	-		-		-	-	-	-	-	_	-	-	-	ŀ
		_	_	_	_	_			-	_	_	_	_	_		_		_	Ļ
-																			L
_				_											_	_			
		-	-	_	-	-					-	-	-	-	_	-			F
-		-	-	_	-	-	-	-	-	_	-	-	-	-		-	-	-	ŀ
		_	_	_	_	_	_		-		-	_	_	_	_	_	_	_	ŀ
_				_										_	_				L
_			_	_	_	_				_		_	_	_	_		_	_	
			_	_							_				_				
			_												_				
			_	_															

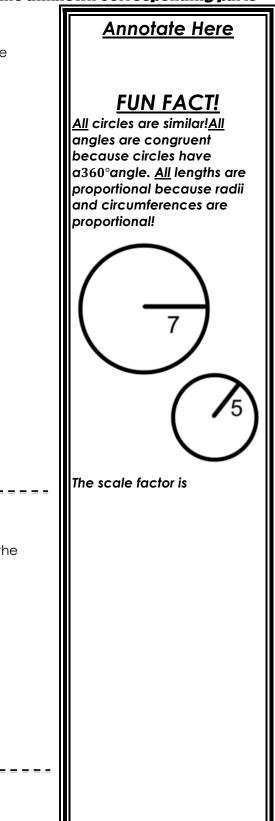
3.3 Day1 – Find Unknown Lengths in Polygons&Circles Target 3 – Use ratios of lengths, perimeter, &area to determine unk<u>nown corresponding parts</u>


Example 1: Identify corresponding parts

Given the similar trapezoids ABCD and EHGF below, identify the side that is proportional to \overline{BC} .

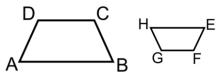

Example 2:Find lengths of unkown corresponding parts

The two rectangular swimming pools are similar. How far is the diagonall across the smaller pool?

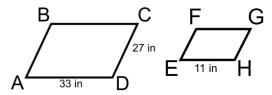


Example 3: Use similarity to find lengths A high school wants to build a basketball court that is similar to an NBA basketball court, which is 94 feet long and 50 feet wide. Unforunately, the high school can only budget a room for a court that is 30.8 feet longer than it's width. How long should the court be, to the nearest foot?

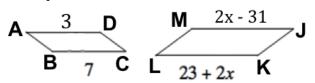
Example 4: Use similarity to find lengths


A 42.9 ft flagpole casts a 253.1 ft long shadow. About how long is the shadow of a 6.2 ft tall woman?

2)


Nou try now!

a) Given the similar trapezoids ABCD and EFGH below, identify the side that is proportional to \overline{BC} .



b) A 42.9 ft flagpole casts a 253.1 ft long shadow. About how long is the shadow of a 6.2 ft tall woman?

c) Parallelograms ABCD and EFGH are similar. What is the length of \overline{GH} ?

$ABCD \sim JKLM$

LK = _____

QUESTIONS OR REFLECTION

Write down at most 2 questions that you can ask the next day. BE SPECIFIC.

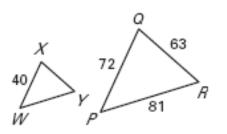
1)

Geometry Annotate Here

3.3 Day 3-Find Unknown Perimeters and Areas Target 3 – Use ratios of lengths, perimeter, & area to determine unknown corresponding parts

4 m A 12 m	6 m	B 18 m			
What is the linear scale factor of f	Rectangle A	to Rectangle B?			
What is the perimeter of Rectang	le A?	Rectangle B? _			
What is the ratio of the perimeters	s of Rectang	le A to Rectangl	e B?		
What is the area of Rectangle A?	Re	ectangle B?			
What is the ratio of the areas of R	ectangle A t	o Rectangle B? _			
Perimeters of Sim				AREAS OF SI	MILAR POLYGONS
If two polygons are similar with the corresponding sides in the ratio perimeters is				ons are similar with ng sides in the ratio	the lengths of of a:b, then the ratio of
Linear Scale Factor: <u>Side Length of Polygon 1</u> Side Length of Polygon 2			their areas i Side length o Side length o	f Polygon I	° 1 5 1
Ratio of Perimeters:	P	J I Olygon I ~ Polygon II	Area of Polyg Area of Polyg	ton I	I Polygon I ~ Polygon II

Linear Scale Factor/Ratio of the Perimeters


Ratio of the Areas

Example 1: Find an unknown ratio

Linear Scale Factor	<u>Perimeter Ratio</u>	<u>Area Ratio</u>
2		
3		
	5	
	6	
		8
		32

Example 2: Find the perimeter of similar figures

a) $\Delta WXY \sim \Delta PQR$. Find the perimeter of ΔWXY .

Ratio of the Areas

Perimeter of ΔWXY: _____

b) The ratio of the areas of two squares is 8:50. If the perimeter of the smaller square is 25 m, what is the perimeter of the larger square?

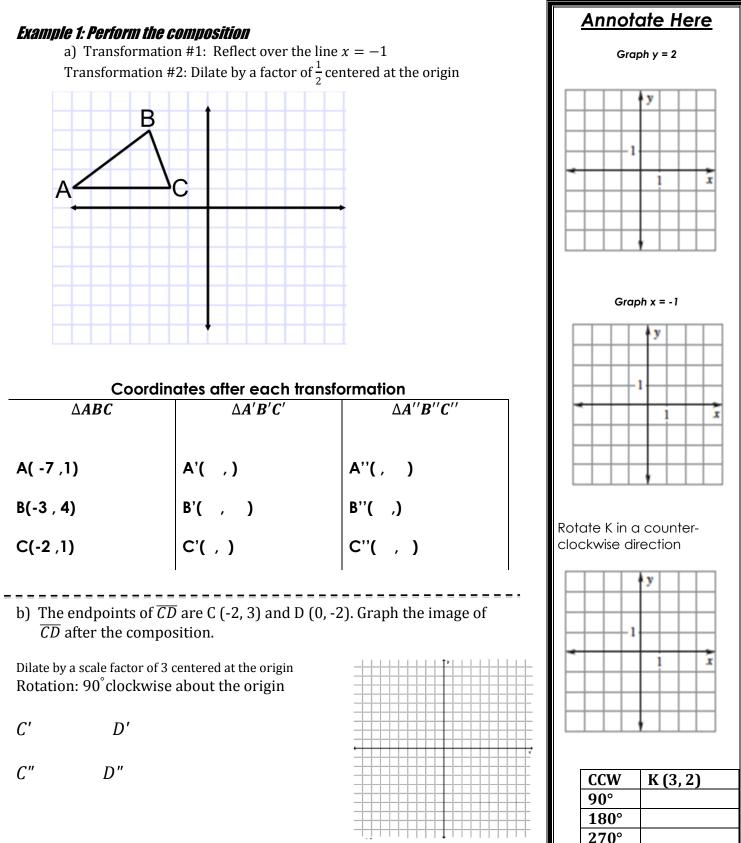
Linear Scale Factor	Ratio of the Areas

Perimeter of Larger Square: ____

Example 3: Find the areas of similar figures

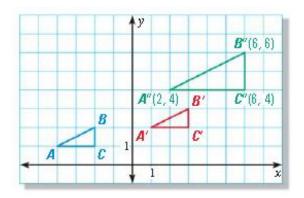
a) The ratio of the area of two circles is 9:16.
If the area of the larger circle is 68 ft², what is the area of the smaller circle?

Linear Scale Factor	Ratio of the Areas


Area of ΔXYZ :

b) $\Delta ABC \sim \Delta DEF$. AB = 3 inches, DE = 6 inches, and the area of ΔABC is 72 square inches. What is the area of ΔDEF ?

Linear Scale Factor	Ratio of the Areas


3.4 -Compositions with Dilations

Target 4 – Perform compositions of figures to determine the coordinates and location of the image

Example 2:Describe the composition

Describe the composition of transformations. Give the exact translation, reflection or rotation using proper notation.

Transformation 1:

Transformation 2:

SUMMARY

In your own words, describe what a composition is.

3.4 Worksheet Answers

18.

- a. P'(-9,6), P''(-3,2)
- b. P'(8,16), P''(-8,16)
- c. $P'(1,2), P''(\frac{1}{2},1)$
- d. P'(2,-1), P''(-2,1)
- 19. $C'(3,0)D'(2,-6), C''(1,0)D''(\frac{2}{3},-2)$
- 20. C'(6, -12)D'(4,0), C''(8, -12)D''(6,0)21. P'(3,6)Q'(9,0)R'(6, -3), P''(-6,3)Q''(0,9)R''(3,6)22. P'(2,6)Q'(6,2)R'(4,0), P''(1,3)Q''(3,1)R''(2,0)
- 23. Transformation 1: Dilate by a factor of 2 centered at the origin Transformation 2: Reflect over line x = 1
- 24. Transformation 1: Rotate 90° CW about the origin
 - Transformation 2: Dilate by a factor of $\frac{1}{3}$ centered at the origin
- 25. A'(-3.4,3.4), A''(-3.4,0.6), Sum = -2.8
- 26. A'(2,8), A''(-1,6), Sum = 5
- 27.SUM = -3
- 28. SUM = 1
- 29. SUM = -14
- 30. SUM = 3