Unit 3Similarfigures and Dilations

Target 1-Use proportions to intentify Iengths of corresponding parts in similar figures
Target 2 - Perform and indentify alilations
Target 3 - Use ratios of lengths, perimeter, a area to determine unknown corresponning parts
3.3a -Use Scale Factor \& Similarity to Determine Unknown Lenyths in Polygons a Gircles
3.3n-Use Scale Factor a Similarity to Determine Unknown Gorresponding Parts

Target 4 - Perform compositions of figures to determine the coordinates and location of the image

Name: \qquad

Vocaloulary

Similar Polygons: Corresponding angles are \qquad and corresponding sides are \qquad

Example 1: Use similarity statements

In the diagram, $\triangle A B C \sim \triangle D E F$.

1. List all pairs of corresponding sides

2. Check that the ratios of corresponding side lengths are equal. Ratio 1:

Ratio 2:
Ratio 3:

Linear Scale Factor of $\triangle A B C$ to $\triangle D E F$?

Example 2: Determine trianyle similarity

A) Determine whether the polygons are similar.

If they are, write the similarity statement and find the scale factor of AtoB.

Similar? YES or NO
Linear Scale Factor: \qquad
Similarity Statement: \qquad

B) Which of the following triangle measurements represents a similar triangle to one with measurements of 6,8 , and 10 inches?
(a) $18 \mathrm{in}, 24 \mathrm{in}$, and 30 in
(b) $1.5 \mathrm{in}, 2 \mathrm{in}$, and 2.5 in
(c) $12 \mathrm{in}, 16 \mathrm{in}$, and 18 in

Example 3: Find linear scale factors and unknown side lengths

Proportion - A comparison of \qquad
a) $\triangle A B C \sim \triangle D E F$.

b) Given that $\triangle S T U \sim \triangle F E D$ and $S T=x+2, U T=x^{2}-x-14, F E=1$, and $D E=2$,find $S T$.

Example 4: Use ratios to find an unknown side

The lengths of the sides of a triangle have the ratio 1:2:3.
If the perimeter of the triangle is 60 yards, what is the length of the smallest side?

Unit 3.1 Worksheet Answers

1. YES, linear scale factor $=\frac{9}{2}$, Answers vary, example similarity statement $\rightarrow T S U \sim L K M$
2. NO
3. YES, linear scale factor $=\frac{2}{1}$,Answers vary, example similarity statement \rightarrow RSTU $\sim W X Y Z$
4.
5.

Scale factor $=\frac{5}{2}$
b. $x=27.5, y=12, z=65^{\circ}$
5. $x=11$
6. $x=9$
7. $X Y=\frac{64}{9}$
8. $Y Z=\frac{48}{5}$
C and D
A, D and E
Answers may vary
Answers may vary
$x=4$ so $S T=8$ or $x=8$ so ST $=28$
4. $x=10$ so $E P=9$ (-25 is extraneous)
15. 6

3.2-Dilations
 Target 2-Perform and identifify dilations

Vocalbulary

Dilation-A transformation in which a polygon is \qquad or by a given linearscale factorusing a
centered \qquad _.

Linear Scale Factor

Look at distance from \qquad to \qquad $\ldots=\frac{\text { Prime Distance }}{\text { PreImage Distance }}$

If $\mathbf{k}<1$, then image is a \qquad
If $\mathbf{k}>1$, then image is an \qquad

Example 1: Inentify dilations

Determine whether the dilation is a reduction (shrink) or an enlargement (expand). Find the linear scale factor of the dilation.
a)
b)

c)
d)

Example 2: Finding the Center of Dilation

Example 3: Perform Dilations

a) The vertices of triangle $A B C$ are $A(-3,0), B(0,6), C(3,6)$. Use scalar multiplication to find $A^{\prime} B^{\prime} C^{\prime}$ after a dilation with is center at the origin and a scale factor of $\frac{1}{3}$.

Graph $A B C$ and its image.

b) The vertices of $\triangle \mathrm{ABC}$ is $\mathrm{A}(-3,4), B(3,-2), C(2,3)$. Find the vertices of the dilated image with scale factor of 2 . The center of the dilation is (0,1).

Example 4: Understanding Notation

$\Delta \mathrm{ABCis}$ dilated to form triangle $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. If $\frac{A B}{A^{\prime} B^{\prime}}=7$, what is $\frac{B^{\prime} C^{\prime}}{B C}$?

QUESTIONS OR REFIEGTION

What concepts were important to take away from this target? Questions?

3.3 Day1-Find Unknown Lengths in PolygonsaGircles Target 3 - Use ratios of lengths, perimeter, aarea to determine unknown corresponding parts

Example 1:Find /engths of unhown corresponding parts

The two rectangular swimming pools are similar.
How far is the diagonall across the smaller pool?

20 meters

Example 2: Use similarity to find /engths

ABCD~JKLM

$L K=$ \qquad

Example 3: Use similarity to find Ienyths

A 42.9 ft flagpole casts a 253.1 ft long shadow.
About how long is the shadow of a 6.2 ft tall woman?

Annotate Here

FUN FACT!
All circles are similar! All angles are congruent because circles have a360 ${ }^{\circ}$ angle. All lengths are proportional because radii and circumferences are proportional!

The scale factor is
a) The vertex of J of a regular hexagon has the coordinates $(-6,27)$. If the hexagon is dilated by a factor of $\frac{1}{5}$. Note: "Regular" means that all sides of a polygon are the same length and all interior angles are congruent.
b) Given the similar trapezoids $A B C D$ and EFGH below, identify the side that is proportional to $\overline{B C}$.

c) The vertex of B of an octagon is located at (24, -16). The octagon is dilated by a factor of 0.25 , with the center of dilation at the origin. What are the coordinates of B^{\prime} ?
d) Parallelograms $A B C D$ and EFGH are similar. What is the length of $\overline{G H}$?

QUESTIONS OR REFLEGTION

Write down at most 2 questions that you can ask the next day. BE SPECIFIC.
1)
2)

12 m
6 m

What is the linear scale factor of Rectangle A to Rectangle B ? \qquad What is the perimeter of Rectangle A? \qquad Rectangle B ? \qquad
What is the ratio of the perimeters of Rectangle A to Rectangle B ? \qquad
What is the area of Rectangle A? \qquad Rectangle B ? \qquad
What is the ratio of the areas of Rectangle A to Rectangle B ? \qquad

Perimeters of Similar Polygons

If two polygons are similar with the lengths of corresponding sides in the ratio $a: b$, then the ratio of their perimeters is \qquad : \qquad .

Linear Scale Factor:

$$
\frac{\text { Side Length of Polygon } 1}{\text { Side Lengthof Polygon } 2}=
$$

Ratio of Perimeters:

THFAPFM 11.7: AREAS OF SIMILAR POLYGONS
If two polygons are similar with the lengths of corresponding sides in the ratio of $a: b$, then the ratio their areas is \qquad : \qquad .
Side length of Polygon I
Side length of Polygon II $=$ Area of Polygon I
$\overline{\text { Area of Polygon II }}=$ \qquad $=$ -

Polygon I ~ Polygon II

Linear Scale Factor/Ratio of the Perimeters

Ratio of the Areas

Example 1: Find an unknown ratio

Linear Scale Factor	Perimeter Ratio	Area Ratio
$\frac{2}{3}$		
	$\frac{5}{6}$	
		$\frac{8}{32}$

Example 2: Find the perimeter of similar fiyures

a) $\triangle W X Y \sim \triangle P Q R$. Find the perimeter of $\triangle W X Y$.

Linear Scale Factor	Ratio of the Areas

\qquad
b) The ratio of the areas of two squares is $8: 50$.

If the perimeter of the smaller square is 25 m , what is the perimeter of the larger square?

Linear Scale Factor	Ratio of the Areas

Example 3: finn the areas of similar figures

a) The ratio of the area of two circles is 9:16.

If the area of the larger circle is $68 \mathrm{ft}^{2}$, what is the area of the smaller circle?

Linear Scale Factor	Ratio of the Areas

b) $\triangle A B C \sim \triangle D E F$. $A B=3$ inches, $D E=6$ inches, and the area of $\triangle A B C$ is 72 square inches. What is the area of $\triangle D E F$?

Linear Scale Factor	Ratio of the Areas

\qquad

3.4-Gompositions with Dilations

Taryet 4-Perform compositions of figures to determine the coorninates ann location of the imaye

Example 1: Perform the composition

a) Transformation \#1: Reflect over the line $y=x$

Transformation \#2: Dilate by a scale factor of $\frac{1}{2}$ centered at origin

Annotate Here

Graph $y=2$

Graph $x=-1$

Rotate K in a counterclockwise direction

CCW	K $(3,2)$
90°	
180°	
270°	

Example 2:Describe the composition

Describe the composition of transformations.
Give the exact translation, reflection or rotation using proper notation.

Transformation 1:

Transformation 2:

SUMMARY

In your own words, describe what a composition is.

3.4 Worksheet Answers

16.

a. $\quad \mathrm{P}^{\prime}(-9,6), \mathrm{P}^{\prime \prime}(-3,2)$
b. $P^{\prime}(8,16), P^{\prime \prime}(-8,16)$
c. $\mathrm{P}^{\prime}(1,2), \mathrm{P}^{\prime \prime}\left(\frac{1}{2}, 1\right)$
d. $\mathrm{P}^{\prime}(2,-1), \mathrm{P}^{\prime \prime}(-2,1)$
17. $\mathrm{C}^{\prime}(3,0) \mathrm{D}^{\prime}(2,-6), \mathrm{C}^{\prime \prime}(1,0) \mathrm{D}^{\prime \prime}\left(\frac{2}{3},-2\right)$
18. $C^{\prime}(6,-12) D^{\prime}(4,0), C^{\prime \prime}(8,-12) D^{\prime \prime}(6,0)$
19. $P^{\prime}(3,6) Q^{\prime}(9,0) R^{\prime}(6,-3), P^{\prime \prime}(-6,3) Q^{\prime \prime}(0,9) R^{\prime \prime}(3,6)$
20. $P^{\prime}(2,6) Q^{\prime}(6,2) R^{\prime}(4,0), P^{\prime \prime}(1,3) Q^{\prime \prime}(3,1) R^{\prime \prime}(2,0)$
21. Transformation 1: Dilate by a factor of 2 centered at the origin

Transformation 2: Reflect over line $x=1$
22. Transformation 1: Rotate $90^{\circ} \mathrm{CW}$ about the origin

Transformation 2: Dilate by a factor of $\frac{1}{3}$ centered at the origin
23. $A^{\prime}(-3.4,3.4), A^{\prime \prime}(-3.4,0.6)$, Sum $=-2.8$
24. $A^{\prime}(2,8), A^{\prime \prime}(-1,6), S u m=5$
25. $A^{\prime}(6,-5), A^{\prime \prime}(3,-2.5)$, Sum $=0.5$
26. $A^{\prime}(4,-2), A^{\prime \prime}(-2,-6)$, Sum $=-8$
27. $A^{\prime}(-5,-9), A^{\prime \prime}(-1,-3)$, Sum $=-14$
28. $A^{\prime}(-2,6), A^{\prime \prime}(4,3)$, Sum $=7$

