Unit 3SimilarFigures and Dilations

Target 1 – Use proportions to identify lengths of corresponding parts in similar figures

Target 2 – Perform and identify dilations

Target 3 – Use ratios of lengths, perimeter, & area to determine unknown corresponding parts 3.3a –Use Scale Factor & Similarity to Determine Unknown Lengths in Polygons & Circles 3.3b –Use Scale Factor & Similarity to Determine Unknown Corresponding Parts

Target 4 – Perform compositions of figures to determine the coordinates and location of the image

Name:

3.1 – Similar Figures Target 1 – Use proportions to identify lengths of corresponding parts in similar figures

Example 3: Find linear scale factors and unknown side lengths

Proportion - A comparison of ______

a) $\triangle ABC \sim \triangle DEF$.

b) Given that $\Delta STU \sim \Delta FED$ and ST = x + 2, $UT = x^2 - x - 14$, FE = 1, and DE = 2, find ST.

Example 4: Use ratios to find an unknown side

The lengths of the sides of a triangle have the ratio 1:2:3. If the perimeter of the triangle is 60 yards, what is the length of the smallest side?

Unit 3.1 Worksheet Answers

- 1. YES, linear scale factor = $\frac{9}{2}$, Answers vary, example similarity statement $\rightarrow TSU \sim LKM$
- 2. NO
- 3. YES, linear scale factor $=\frac{2}{1}$, Answers vary, example similarity statement $\rightarrow RSTU \sim WXYZ$

4. Scale factor = $\frac{5}{2}$ a. $x = 27.5, y = \overline{12}, z = 65^{\circ}$ b. *x* = 11 5. 6. x = 9 $XY = \frac{64}{2}$ 7. 9 48 8. YZ =C and D 9. 10. A, D and E 11. Answers may vary 12. Answers may vary 13. x = 4 so ST = 8 or x = 8 so ST = 2814. x = 10 so EP = 9 (-25 is extraneous) 15. 6

3.2 – Dilations Target 2 – Perform and identify dilations

Geometry Honors

Example 2: Finding the Center of Dilation

Example 3: Perform Dilations

a) The vertices of triangle ABC are A (-3, 0), B (0, 6), C (3, 6). Use scalar multiplication to find A'B'C' after a dilation with is center at the origin and a scale factor of $\frac{1}{3}$.

Graph ABC and its image.

b) The vertices of \triangle ABC is A(-3, 4), B(3, -2), C(2, 3). Find the vertices of the dilated image with scale factor of **2**. The center of the dilation is (0, 1).

_																				
L										1	У									
Г		_																		
-		_										-	-		-	-	-			
-	-	-	-	-	<u> </u>	<u> </u>		-	-	-		-	-	-	-	-	—	-	-	
I-	_	_	_					_	_	_		_	_	_	_	_	_	_	_	
_		_																		
L																				
-													_			_	_			
-		-	-	-	-	-		<u> </u>	-	-		-	-	-	-	-	-	-		
-	_	—	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
-	_		_	_	_			<u> </u>	_	_		_	_	_	_		_	_	_	_
L.																				
Г																				×
-																_	_			
1-		-	-	-	-			<u> </u>				-	-	-	-	-	-	-		
-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-
-	_	_	_	_		_				_		_	_	_	_	_	_	_	_	-
-	_							<u> </u>												
1																				
-		_	i—	i —	<u> </u>	<u> </u>		<u> </u>				_	_		_	_	-	<u> </u>		
-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	
-	_		_	-				<u> </u>	_	-				_				_	_	-
																		1		

Example 4: Understanding Notation

 ΔABC is dilated to form triangle $\Delta A'B'C'$. If $\frac{AB}{A'B'} = 7$, what is $\frac{B'C'}{BC}$?

QUESTIONS OR REFLECTION

What concepts were important to take away from this target? Questions?

3.3 Day1 –Find Unknown Lengths in Polygons&Circles Target 3 – Use ratios of lengths, perimeter, &area to determine unknown corresponding parts

3.3 Day 3-Find Unknown Perimeters and Areas

Target 3 – Use ratios of lengths, perimeter, & area to determine unknown corresponding parts

4 m A 6 m	B 18 m	
What is the linear scale factor of Rectangle A What is the perimeter of Rectangle A?	.	
What is the ratio of the perimeters of Rectang What is the area of Rectangle A? R What is the ratio of the areas of Rectangle A	ectangle B?	
Perimeters of Similar Polys If two polygons are similar with the lengths of corresponding sides in the ratio a:b, then the perimeters is: Linear Scale Factor: Side Length of Polygon 1 Side Length of Polygon 2 Ratio of Perimeters:	gons If two e ratio of their Side Area	TOPEM 11.7: AREAS OF SIMILAR POLYGONS two polygons are similar with the lengths of esponding sides in the ratio of a : b, then the ratio r areas is e length of Polygon II = a of Polygon II = a of Polygon II = Polygon I ~ Polygon II ~ Polygon

Linear Scale Factor/Ratio of the Perimeters

Ratio of the Areas

Example 1: Find an unknown ratio

Linear Scale Factor	Perimeter Ratio	<u>Area Ratio</u>
2		
3		
	5	
	6	
		8
		32

Example 2: Find the perimeter of similar figures

a) $\Delta WXY \sim \Delta PQR$. Find the perimeter of ΔWXY .

Linear Scale Factor	Ratio of the Areas

Perimeter of ΔWXY: _____

b) The ratio of the areas of two squares is 8:50. If the perimeter of the smaller square is 25 m, what is the perimeter of the larger square?

Linear Scale Factor	Ratio of the Areas

Perimeter of Larger Square: ____

Example 3: Find the areas of similar figures

a) The ratio of the area of two circles is 9:16.

If the area of the larger circle is 68 ft², what is the area of the smaller circle?

Linear Scale Factor	Ratio of the Areas

Area of ΔΧΥΖ:

b) $\Delta ABC \sim \Delta DEF$. AB = 3 inches, DE = 6 inches, and the area of ΔABC is 72 square inches. What is the area of ΔDEF ?

Linear Scale Factor	Ratio of the Areas

Area of ΔDEF: _____

3.4 - Compositions with Dilations

Target 4 – Perform compositions of figures to determine the coordinates and location of the image

Geometry Honors Example 2:Describe the composition

Describe the composition of transformations.

Give the exact translation, reflection or rotation using proper notation.

Transformation 1:

Transformation 2:

SUMMARY

In your own words, describe what a composition is.

3.4 Worksheet Answers

16.

- a. P['](-9,6), P''(-3,2) b. P['](8,16), P''(-8,16)

c.
$$P'(1,2), P''(\frac{1}{2},1)$$

- d. P'(2,-1), P''(-2,1)
- 17. $C'(3,0)D'(2,-6), C''(1,0)D''(\frac{2}{3},-2)$
- 18. C'(6, -12)D'(4,0), C''(8, -12)D''(6,0)
- 19. P'(3,6)Q'(9,0)R'(6,-3), P''(-6,3)Q''(0,9)R''(3,6)20. P'(2,6)Q'(6,2)R'(4,0), P''(1,3)Q''(3,1)R''(2,0)
- 21. Transformation 1: Dilate by a factor of 2 centered at the origin Transformation 2: Reflect over line x = 1
- 22. Transformation 1: Rotate 90° CW about the origin

Transformation 2: Dilate by a factor of $\frac{1}{3}$ centered at the origin

23. A'(-3.4,3.4), A''(-3.4,0.6), Sum = -2.8

24. A'(2,8), A''(-1,6), Sum = 5

- 25. A'(6, -5), A''(3, -2.5), Sum = 0.5
- 26. A'(4, -2), A''(-2, -6), Sum = -8
- 27. A'(-5, -9), A''(-1, -3), Sum = -14
- 28. A'(-2,6), A''(4,3), Sum = 7